Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The interaction between radio jets and quasar host galaxies plays a paramount role in quasar and galaxy co-evolution. However, very little is known at present about this interaction at very high−z. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations in Bands 7 and 3 of six radio-loud (RL) quasar host galaxies atz > 5. We recovered [C II] 158 μm line and underlying dust continuum emission at > 2σfor five sources, while we obtained upper limits for the CO(6-5) emission line and continuum for the remaining source. At the spatial resolution of our observations (∼1″.0–1″.4), we did not recover any perturbed or extended morphologies or kinematics, which are known signatures of potential mergers. These galaxies already host large quantities of gas (∼1010M⊙), with [C II] luminosities ofL[C II] ∼ 108 − 9 L⊙and [C II]-based star formation rates of 30 − 400 M⊙yr−1. In building their radio/submillimeter (radio/submm) spectral energy distributions (SEDs), we found that in at least four cases, the 1 mm continuum intensity arises from a combination of synchrotron and dust emission. The initial estimation of synchrotron contribution at 300 GHz in these cases is of ≳10%. Assuming a scenario where the continuum emission is solely due to cold dust as an upper limit, we obtained infrared (IR) luminosities ofLIR ∼ 1011 − 12 L⊙. We compared the properties of the sources inspected here with a large collection of radio-quiet sources from the literature, as well as a sample of RL quasars from previous studies at comparable redshifts. We recovered a mild potential decrease inL[C II]for the RL sources, which might be due to a suppression of the cool gas emission due to the radio jets. We did not find any [C II] emitting companion galaxy candidate around the five RL quasars observed in Band 7. Given the depth of our dataset, this result is still consistent with what has been observed around radio-quiet quasars. Future higher spatial-resolution observations, over a broader frequency range, of high−zRL quasars hosts will allow us to further improve our understanding of the physics of these sources.more » « lessFree, publicly-accessible full text available February 1, 2026
-
ABSTRACT The attenuation of Lyα photons by neutral hydrogen in the intergalactic medium (IGM) at z ≳ 5 continues to be a powerful probe for studying the epoch of reionization. Given a framework to estimate the intrinsic (true) Lyα emission of high-z sources, one can infer the ionization state of the IGM during reionization. In this work, we use the enlarged XQR-30 sample of 42 high-resolution and high signal-to-noise quasar spectra between $$5.8\lesssim \, z\lesssim \, 6.6$$ obtained with VLT/X-shooter to place constraints on the IGM neutral fraction. This is achieved using our existing Bayesian QSO reconstruction framework which accounts for uncertainties such as the: (i) posterior distribution of predicted intrinsic Lyα emission profiles (obtained via covariance matrix reconstruction of the Lyα and N v emission lines from unattenuated high-ionization emission line profiles; C iv, Si iv + O iv], and C iii]) and (ii) distribution of ionized regions within the IGM using synthetic damping wing profiles drawn from a 1.63 Gpc3 reionization simulation. Following careful quality control, we used 23 of the 42 available QSOs to obtain constraints/limits on the IGM neutral fraction during the tail-end of reionization. Our median and 68th percentile constraints on the IGM neutral fraction are: $$0.20\substack{+0.14 -0.12}$$ and $$0.29\substack{+0.14 -0.13}$$ at z = 6.15 and 6.35. Further, we also report 68th percentile upper limits of $$\bar{x}_{\mathrm{H\, {\small I}}{}} \lt 0.21$$, 0.20, 0.21, and 0.18 at z = 5.8, 5.95, 6.05, and 6.55. These results imply reionization is still ongoing at $$5.8\lesssim \, z\lesssim \, 6.55$$, consistent with previous results from XQR-30 (dark fraction and Lyα forest) along with other observational probes considered in the literature.more » « less
-
We present bolometric luminosities, black hole masses, and Eddington ratios for 42 luminous quasars at z ≳ 6 using high signal-to-noise ratio VLT/X-shooter spectra, acquired as part of the enlarged ESO Large Programme XQR-30 . In particular, we derived the bolometric luminosities from the rest-frame 3000 Å luminosities using a bolometric correction from the literature, as well as the black hole masses by modeling the spectral regions around the C IV 1549 Å and the Mg II 2798 Å emission lines, with scaling relations calibrated in the Local Universe. We find that the black hole masses derived from both emission lines are in the same range and the scatter of the measurements agrees with expectations from the scaling relations. The Mg II -derived masses are between ∼(0.8−12) ×10 9 M ⊙ and the derived Eddington ratios are within ∼0.13−1.73, with a mean (median) of 0.84(0.72). By comparing the total sample of quasars at z > 5.8, from this work and from the literature, to a bolometric luminosity distribution-matched sample at z ∼ 1.5, we find that quasars at high redshift host slightly less massive black holes, which accrete slightly more rapidly than those at lower z , with a difference in the mean Eddington ratios of the two samples of ∼0.27. These findings are in agreement with the results of recent works in the literature.more » « less
-
Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.more » « less
-
null (Ed.)We present a multiline survey of the interstellar medium (ISM) in two z > 6 quasar host galaxies, PJ231−20 ( z = 6.59) and PJ308−21 ( z = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up = 7, 10, 15, 16), H 2 O 3 12 − 2 21 , 3 21 − 3 12 , 3 03 − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J CO excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up ≤ 7, while the J up ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21 − 3 12 line detection in the same quasar places this object on the L H 2 O − L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H ∼ 0.8 × 10 5 cm −3 , N H = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn.more » « less
-
ABSTRACT The final phase of the reionization process can be probed by rest-frame UV absorption spectra of quasars at z ≳ 6, shedding light on the properties of the diffuse intergalactic medium within the first Gyr of the Universe. The ESO Large Programme ‘XQR-30: the ultimate XSHOOTER legacy survey of quasars at z ≃ 5.8–6.6’ dedicated ∼250 h of observations at the VLT to create a homogeneous and high-quality sample of spectra of 30 luminous quasars at z ∼ 6, covering the rest wavelength range from the Lyman limit to beyond the Mg ii emission. Twelve quasar spectra of similar quality from the XSHOOTER archive were added to form the enlarged XQR-30 sample, corresponding to a total of ∼350 h of on-source exposure time. The median effective resolving power of the 42 spectra is R ≃ 11 400 and 9800 in the VIS and NIR arm, respectively. The signal-to-noise ratio per 10 km s−1 pixel ranges from ∼11 to 114 at λ ≃ 1285 Å rest frame, with a median value of ∼29. We describe the observations, data reduction, and analysis of the spectra, together with some first results based on the E-XQR-30 sample. New photometry in the H and K bands are provided for the XQR-30 quasars, together with composite spectra whose characteristics reflect the large absolute magnitudes of the sample. The composite and the reduced spectra are released to the community through a public repository, and will enable a range of studies addressing outstanding questions regarding the first Gyr of the Universe.more » « less
An official website of the United States government
